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A b s t r a c t  

The classical nonholonomic equations for a mechanical system subject to linear nonintegrable 
constraints are presented in Section 2. These are displayed in a geodesic form by the use of a suitable 
covariant derivative (due to Synge) in Section 3. We then express the Frobenius integrability of the 
constraint distribution by means of a zero torsion condition for the above Synge connection. Section 4 
provides a self-contained derivation from a nonholonomic variational problem of the equations of 
motion for nonholonomic systems. These equations, which are nonequivalent to the previous ones, 
were first developed by Arnold and Koziov and called vakonomic (vak) equations. Sections 5 and 
6 are concerned with a geometrical interpretation of the terms occurring in the right-hand side of 
the vak equations. Under quite general assumptions, these latter can be described in terms of the 
curvature of an Ehresmann (local) connection whose horizontal subspace is precisely the constraint 
distribution. Furthermore, by introducing a suitable Lie group action on the configuration manifold, 
the local Ehresmann connection can be made into a global one which coincides with the mechanical 
connection of Smale-Marsden. Section 7 gives a motivation, in terms of Hopf-Rinow and Ambrose- 
Singer theorems, for the nonclassical requirement of the assignment of the reaction forces' values 
in the initial kinematical state in vakonomic mechanics. Section 8 develops a fundamental approach 
to the description of holonomic, i.e. geometrical constraints. We describe the reaction forces by 
using the Poincar6 dual (a class of closed l-forms) of the orientable constraint submanifold. As an 
instance of the construction developed in Sections 5 and 6, we consider in Section 9 the disk rolling 
without sliding on the plane. 
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1. Introduct ion  

This paper presents an investigation of the dynamical equations for mechanical systems 
subject to nonholonomic constraints from both mechanical and geometrical points of view. 
Throughout this work, we describe the system in terms of the variables of the unconstrained 
system and introduce additional parameters to describe the reaction forces of the constraints. 

Although this approach allows one to look at the motion and the reaction forces simulta- 

neously, it is rarely pursued in literature, mainly due to the difficulty of its geometrical 
globalization. The classical line of thought for the same problem (due to Lagrange) is to 

introduce coordinates adapted to the constraint submanifold and, by means of the Princi- 
ple of Virtual Work, to get a resulting reduced system of equations where the unknown 

reaction forces are absent. The application of the above procedure to nonholonomic linear 

and nonlinear constraints is troublesome in that we are lacking a geometrically satisfactory 
definition of both the set of virtual displacements compatible with the constraints and that of 
the (workless) reaction forces. Nonetheless, one usually forces the holonomic construction 

to the nonholonomic case thereby obtaining a closed system of equations (herein called 
nonholonomic equations) by defining the virtual displacements according to the so-called 

nonholonomic condition (see Section 2). 

An altemative way to tackle the problem is to drop the Principle of Virtual Work as a 
cornerstone of the theory and to adopt from the very beginning a variational axiomatic 

approach, that is to say, the equations of motion are the Euler-Lagrange equations related 
to a variational nonholonomic problem taking into account the constraints by Lagrange 

multipliers. This point of view, briefly reported in Section 3, is explained in the book [Arnold 
et al., 1988] where the authors coin for it the name of vakonomic dynamics (dynamics of 

variational axiomatic kind). For the sake of simplicity, we adopt here the same terminology. 
As a matter of fact, the two formulations are nonequivalent for nonintegrable nonholonomic 
constraints, so that the whole matter is still unsettled. 

In this paper, the primary aim is to analyze the detailed geometrical structure of both 
theories in order to give selective criteria for (a choice between) them. To start with, 

in Section 2 we introduce a synthetic rational reconstruction of the mechanics of con- 
strained systems and explain the nonholonomic conditions by a scheme close to the one in 
[Dazord, 1994]. In Section 3 we show that solutions of the nonholonomic equations are 

affine geodesics of a pseudo-connection introduced by Schouten, defined only on the con- 
straint distribution (see also [Vershik, 1984; Koiller, 1992] for a critical discussion on this 
point), and then we derive the Synge canonical extension of the above connection. By means 
of it, we characterize the Frobenius integrability of the constraint linear distribution by a 
condition of zero torsion for the extended connection (Proposition 3.2). This characteriza- 
tion of a purely geometrical property of the system is meaningful from a mechanical point 
of view, since it uses the same object entering in the dynamical equations. 

This feature has a counterpart in vakonomic dynamics in terms of curvature. In Section 5 
we show in detail that given a constraint distribution .4, a Riemannian metric (e.g. induced by 
the kinetic energy), and if the distribution orthogonal to .4 is integrable, we can introduce 
an Ehresmann (locally defined) connection, whose horizontal subspace is precisely the 
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assigned constraint distribution .4. It turns out that the reaction forces of the constraint 

along the motion, given by the right-hand side of vakonomic equations, can be expressed 

by means of the curvature of the connection. The same object characterizes the integrability 
of the constraint distribution by a zero curvature condition (Proposition 5.2). 

In Section 6, we further pursue this construction. By supposing the distribution orthog- 

onal to .4 involutive, hence integrable, we can introduce a group action whose orbits are 
precisely the leaves of the foliation related to the orthogonal distribution. A theorem of 

Arnold (Theorem 6.3) allows one under suitable hypotheses to make the above foliation 
into a fibration and to endow the configuration manifold with a principal bundle structure 
(Proposition 6.1). Then, we show that the Ehresmann connection previously introduced can 

be extended to a globally defined principal bundle connection, whose horizontal subspace 
coincides with .4. An instance of this construction, which is physically meaningful, is of- 
fered by the disk rolling without sliding on the plane, in Section 9. Moreover, the above 

connection is precisely the mechanical connection of Kummer-Smale in [Marsden, 1991 ]. 
In short, for a manifold which is the total space of a principal bundle, and equipped with 

a metric, the mechanical connection is defined through the related momentum map and 

the locked inertia tensor. Besides this geometrical analysis of vakonomic equations, Sec- 

tion 6 contains a hierarchical presentation of integrable constraints focussing on the global 
geometrical properties of the leaves of the constraint foliation. 

Special attention is paid throughout the work to illustrate that the intimate structure of 
vakonomic (variational) equations is richer and more flexible than its nonvariational Chetaev 

counterpart. As a first instance of this, in Section 4 we show that, by adopting a different 

definition of varied path (Definition 4.3), the variational scheme generates a variational 
formulation of nonholonomic equations (Theorem 4.2). At the same time, in Section 4 it is 

stressed that the varied paths according to Chetaev conditions (necessarily) do not satisfy 
the constraint up to first order, unlike the classical variations. This latter fact may help to 

precise the geometrical nature of Chetaev conditions. 
Moreover, in Section "7 we introduce the accessibility set of a nonintegrable constraint 

distribution by means of the classical Chow theorem and its version for principal bundles 
as given by the Ambrose-Singer theorem and we clarify the classical picture of nonholo- 

nomic constraints as "constraints not affecting the possible configurations" in terms of 
accessibility sets. A nonholonomic version of the Hopf-Rinow theorem in [Vershik and 
Gershkovich, 1994] (Theorem 7.3) gives the conditions for the existence of solutions of the 
variational vakonomic problem between two fixed mutually accessible configurations on 
a manifold equipped with a complete Riemannian metric and a completely nonintegrable 
constraint distribution. Since vakonomic equations can be given normal form with respect 
to the configuration variables and Lagrange multipliers, the (initial) Cauchy problem can be 
well-posed. It follows that vakonomic dynamics has two equivalent formulations: (i) as a 
variational problem with fixed boundary conditions (2n parameters); (ii) as a Cauchy prob- 
lem with assigned initial conditions (2n - dim .4 parameters for the initial phase space point 
plus dim A parameters for the initial Lagrange multipliers, that is 2n parameters). Such an 
equivalence motivates the quite unusual request to assign the value of the multipliers among 
the initial data, which we know to be equivalent to the specification of the reaction forces 
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in the initial configuration. Unlike the above situation, the lack of a standard variational 

formulation of nonholonomic dynamics points out that the relation between dynamical and 

kinematical accessibility cannot be investigated by the aforementioned arguments. 
Finally, Section 8 is concerned with a foundational approach to the Lagrangian holonomic 

dynamics by the use of the cohomological Poincar6 dual of the constraint submanifold, 
within the vakonomic framework. As we remarked above, the Lagrangian description of 
the holonomic ideal constraints in the larger framework of the unconstrained manifold, that 

is £(x,.~, ~.) = L ( x , k )  + ~.~rpU(x), is quite unsatisfactory due to the possibly indefinite 
tensorial character of E. Moreover, it is known that the choice of a Lagrangian asymptotic 

procedure of realization of the holonomic constraint is highly arbitrary. These procedures 
are physically interesting because they determine the local full structure of the constraint in 

a whole sufficiently small neighbourhood of the aforementioned unconstrained manifold. 

A survey of the topological obstructions to the aforementioned tensorial character of £ 

leads us to place the problem at issue into the vakonomic framework. This procedure is 
performed by choosing, as a global representative of the holonomic distribution (locally 
given as kernel of the exact  form dcp), a suitable representative of the Poincar6 dual class 

of the constraint submanifold (a closed form 0). The Localization Principle  allows us to 
choose the compact support of the Poincar6 dual contained in an arbitrarily small tubular 

neighbourhood of the constraint manifold, which constitutes a topological  realization of 

the holonomic constraint. 

2. Constrained mechanical systems 

For the sake of completeness, we give a brief outline of the theory of constrained mechani- 

cal systems. We suppose as given an inertial space ~7 and n material points M i , i = 1 . . . . .  n, 

having masses mi ,  i =- 1 . . . . .  n, respectively. We fix an inertial frame at a point O (origin) 

in E and hence describe the configurations of the mechanical system S of n points by n 
vectors O P  --- ( O P i )  = (OP1 . . . . .  O P n )  ~ ~3n. Active forces acting on S '  points will 
be described by given functions Fi " T R  3n ~--- [~3n × R3n :, ~3~*, where [~3n* is the dual 

space of ~3n,  since we have in mind their characterization as semibasic forms working on 

virtual displacements (see, e.g. [Godbillon, 1969; Libermann and Marie, 1987]). We say 

that a constraint is imposed to S if (i) the positions and velocities of S are restricted to 
a submanifold of the tangent bundle ,,4 c T R  3n, eventually dependent on time, and (ii) 
to every admissible phase space element ( O P ,  O'P) ~ ,A, this is realized physically by 
reaction forces R i ,  i = 1 . . . . .  n, belonging to an assigned set  "~(oP, oP) ~ •3n*. 

To describe the dynamical evolution of S subject to constraints and active forces, we first 
define the dynamical ly  possible  motions R D I ~ t w-~ 0 Pi (t) as those satisfying 

( O P i ( t ) ,  O 'P i ( t ) )  E .A, ¥ t  ~ I, (2.1) 

i.e. kinematicaUy possible, and (D'Alembert Principle) 

m i O ' P i ( t )  - F i ( O P ( t ) ,  O 'P( t ) )  - R i ( t )  = O, R i ( t )  E T~(op, oP) ,  ¥ t  E I. (2.2) 
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We use in (2.2) the identification between R 3n and ~3n. afforded by the canonical Euclidean 

isomorphism. Note that the system (2.1), (2.2) is largely undetermined. We can make a fuller 

use of (2.2) by means of  the Principle of  Virtual Work; this requires a deeper geometrical 

and dynamical description of the constraint than the one afforded by ,4 and 7~ respectively. 

Set, for simplicity, ~r :---- (OPi ,  O'Pi) C ,4, the typical phase space element allowed by the 

constraint. In the sequel, we follow the scheme developed in [Dazord, 1994]. 

From .,4, consider the trivial vector bundle over `4, .,4 :=  `4 × ~3n > `4, and let q,, 

4, : ft. ~ ~k, ~(~r,u) = q~ou, 
~rr C L([~ 3n, [Rk), rk~,~ ---- k, 'Ca E ,4, (2.3) 

be a surjective function, linear on the fibres of .,4. 

Let V :=  ker • be the 3n - k subbundle of A whose typical fibre is V~ :=  ker q~ < ~3n 

and let V ° be the annihilator of  V, with typical fibre 

V~ :=  {R E [~3n*: (R ,w)  = 0 ,  "Cw e Vo}. (2.4) 

We call V,, the space of  virtual (reversible) displacements compatible with the constraints 

in the phase space configuration a 6 ,4. Note that, unlike in the application to holonomic 

and nonholonomic constraint, we leave, at this level, the dimension of the constraint man- 

ifold d im,4  completely independent from the dimension of the subbundle V of virtual 

displacements. 
The constraint is ideal (workless) if and only if the set of reaction forces explicable by 

the constraints, 7~, is the k-dimensional bundle over A of fibre 

7 ~  :=  V~, Vcr ~ `4. (2.5) 

As a straightforward consequence, 

ker ~ ,  C ker R, `CR ~ ~ o ,  (2.6) 

and, by a well-known theorem of homomorphism of vector spaces, to every R E 7~o, there 

exists a linear map A = (~l . . . . .  ~.k) ~ Nk, such that R = A o q~ ,  and (2.2) becomes 

miO'Pi  = Fi (a( t ) )  + A( t )  o tiger(t). (2.7) 

In order to rewrite (2.1), we can, without loosing any generality, describe locally ,4 as the 

union of  smooth level sets of some function f : U (C T II~ 3n) ~ Nm, f = (f~ . . . . .  fm),  

and write (2.1) as 

,41u = {(01~,O'Pi): fF(OPi,  O'Pi) = 0 } ,  F' = 1 . . . . .  m = 6 n  -- dim`4. (2.8) 

From (2.8), by deriving f/- with respect to time along any kinematically possible motion 

and substituting O'P as given by (2.7), we form the linear system 

BI-~Ac~ = CI-, (2.9) 

where 

--~1 OfF 
Brc~ :=  - ~i~ (2.10) 

i=1 mi O0"Pi 
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~-~ ( 1 OfF Fi % OfF . o . e i ) .  (2 .11)  
CF :-~" -- mi o0"e~i 30  e------~ 

i=1 

The conditions to determine A uniquely can be derived by a simple algebra argument on the 

rank of  B and C. As a consequence, if forces Fi are given and constraints .4 are assigned by 

local functions f r ,  for every choice of  R ~ 7 ~ ,  the Lagrange multipliers A can be given as 

constitutive functions o f a  ~ ,4. We introduce now the classical choice of  • for holonomic 

and nonholonomic (linear and nonlinear) constraints and make some considerations. 

A smooth holonomic, i.e. purely geometrical, d-dimensional constraint is an embedded 

smooth submanifold S of  ff~3n, dim S = d, 0S = 13. In this case, -4 ---- TS, the tangent 

bundle of  S, and to express q~ we refer to a local representation of  S, e.g. as union of  level 
sets of  smooth functions ¢ : ~3n ) lt~ t, l = 3n -- d. In such a case, S ___ U = 4~- 1 (c) and 

VOP ~ U, we state the • in (2.3) to be the following: 

~cr = Clgoe :=  dq~(OP), VOp :=  ker d~b(OP) = TopU, (2.12) 

with k in (2.3) equal to l. The functions f r ( O P ,  OP) in (2.8) are given now ( F  = or) by 

Y~i (Oq'gcJ OOPi)(Oei)O'ei" It is easily seen that the m × k matrix Br~ becomes in this 

case a l x l matrix Ba~ and that, to determine A uniquely, the above algebraic condition 

reduces to 

n 
r k E  04~ . 0q~t~ - - m a x = l ,  

i=1 OOPi OOPi 

which is always true if rk d~b = l. However, the structure of  the Lagrange multipliers A 

depends, to every fixed R E ~ ,  on the particular local function ~b choosen, and this represents 

a serious drawback if S cannot be given globally as a level set of  a single function. This 

point will be discussed at length in Section 8 where we will introduce a global description of  

holonomic codimension-one constraints that utilize the cohomological Poincar6 dual class 

of  S and in the general framework of  vakonomic dynamics. 

Nonholonomic (or kinematical) constraints are generally thought as additional constraints 

over a submanifold M C R 3", representing the configurations allowed by a holonomic 

constraints, that we refer to local coordinates xi, i = 1 . . . . .  d = dim M; as before, we 

denote by ~r = (x, :~) the typical point of  T M in a fibred chart. For us, a (d - k)-dimensional 
linear nonholonomic constraint is a nonsingular smooth distribution (subbundle) 

- 4 C T M ,  - 4 x = , A A T x M  <TxM,  d i m - 4 x = d - k ,  Y x E M .  (2.13) 

An integral manifold of  .4 (leaf) through x e M is a (d - k)-dimensional submanifold S 

of  M such that TxS = .4x, and .4 is called integrable if and only if at every x ~ M there 
exists a (unique) maximal integral manifold through x. The set of  leaves E, called foliation, 
forms a partition of  M. Frobenius theorem below gives a necessary and sufficient condition 
of  integrability of.4.  Denote, with a little abuse of  notation, by X(.4) the module of  smooth 
vector fields on M, sections of  the bundle rat : .4(C TM) > M. 
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T h e o r e m  (Frobenius) .  ,4 is a completely integrable distribution if and only i f  for  every. 
pair X, Y of  differentiable sections of ,4,  X, Y E 2((,4), their Lie bracket is a differentiable 
section of`4, [X, Y] ~ 2((`4). 

A general (linear) (d - k)-dimensional distribution ,4 C T M  can be locally assigned as 
the kernel of k suitable linearly independent l -forms Ac~ • T U  ~ ~, i.e. 

,41U = {(x,.f) E T U :  Acti(x)Jc i = 0},  rkAc~i = k, (2.14) 

and Lichnerowitz version of Frobenius theorem [Lichnerowicz, 1954, p.41 ] gives, whenever 

,4 is completely integrable, the following local representation for the forms A,~: there exists 

a matrix-valued function aut~ = a~/~ (x), det a # 0, and 
k real-valued functions ~b,~ • U C M > N such that 

(i) 

(ii) 

Aui(x)  = au~(x)Oo~i (x), x E U, 

hence v4 can be rewritten as 

`41u = [ ( x , 2 )  E TU:  aa~(x)Oq~(x)  Jc t" 

(2.15) 

E T U :  O(3~(X)x i = 0} 
Ox ~ 

(2.16) 

It is now clear that U is the union of level sets (leaves of  the foliation), i.e. there exists an 

open set W C ~k, and 

U = U 4~-l(c) '  ~b = (4~1 . . . . .  4'k), (2.17) 
cE W 

so that 

`41U = U T ( ¢ - I ( c ) ) =  U {(x'~) E T U : x  E ~b-I(c),,f E Tx((b- l (c ) )} .  (2.18) 
cEW cEW 

Condition (2.1) is locally given by Aai(x(t))jci( t)  ---- 0, so the kinematically possible 

motions are the motions along a fixed leaf. Therefore, the previous choice for q~ still applies 

and, in particular, 

qO(x,~t) : q0x := (Aai (x ) )  : \ Ox i / ,  
ker(  O~bc~(x ) ] V~ :---- ker(A~i(x)) = \ Ox i }. 

(2.19) 

Note that, as before, we get a global description of the constraint .,4 if and only if the 

related foliation is a fibration (see Section 5). 
For nonholonomic nonintegrable linear constraints, even in the lack of a local integral 

manifold, and hence of an underlying geometrical interpretation of the set of  virtual displace- 
ments, the natural assignment of  qo is to identify the subbundle V of virtual displacements 
precisely with the distribution `4, and to set again • := (Aai). This is in agreement with 

the historical line of  thought, as drawn in [Whittaker, 1944]. 
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Finally, for nonholonomic nonlinear constraints, given as usual by local functions 

.AIu = {(x,2) E TM:  f,~(x,.t) = 0, ot = 1 . . . . .  k}, rk(Of~'~ = k, (2.20) 
\ Oft ~ ) 

it is largely acknowledged that the choice of  • and V is given by the Appell-nonholonomic- 

Hamel conditions [Appell, 1904; Chetaev, 1932, 1933; Arnold et al., 1988, p.17] 

c I ) ( x , x ) : = { ~ ( x , k ) ) : N d  > lR k, V ( x , ~ ) : = k e r ( ~ ( x , 2 ) )  (2.21, 
\ OJc \ 0 2  

which still allows one to determine uniquely the Lagrange multipliers A from (2.9). Note 
that this assignment of  q~ is partially unsatisfactory for a number of reasons: 

(a) The related equations of  motion (2.22) and (2.23) below are not equivalent to the 

ones deriving from the variational principle of stationary action with constraints (see 
Section 3). 

(b) The expression of multipliers A depends on the assignment of local functions f~ and 
the tensorial character of  A with respect to changes of  overlapping charts is not clear. 

If  active and inertial forces acting on S points are taken into account by a smooth 

Lagrangian function L : T M  > N, the dynamical equations of  S subject to nonholo- 

nomic ideal constraints are - respectively in the linear and nonlinear case - the following 
analogues of (2.1), (2.2), 

and 

[L]i : )~C~Aai (x), Acd (X)J¢ i : 0, (2.22) 

[L]i = ~a 0fc~. (x, k), f~ (x, 2) ----- 0, (2.23) 
02 t 

where 

[L]i : :  dt k~jci ] ~x i • 

In the following, we will restrict to systems subject to linear constraints and we will call for 
simplicity, Eq. (2.22) nonholonomic equations of  motion. 

3. A torsion free condition for the integrability of  constraint distribution in 
nonholonomic  dynamics 

Let M be a smooth manifold referred to local coordinates xi, i ---- 1 . . . . .  n, and let 
L : T M  > ~, L : =  lgij(X)jci~J be the Lagrangian. M has naturally a structure of 
Riemannian manifold induced by the metric gij; f u r t h e r m o r e ,  the motions of  the free system 
(M, L) are geodesic curves with respect to g i j ,  i.e. solutions of 

V~2 = [L] = 0, (3.1) 
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where V is the covariant derivative of  the Levi-Civita torsion-free connection. Add to the 

system a linear constraint .4 C T M ,  whose local expression is (2.14). In [Vershik, 1984], 

the author proves the following proposition. 

Proposition 3.1. The equations o f  mot ions  o f  the constrained system (M,  L, A) can be 

given the geodesic  f o r m  (3.1) with respect  to a suitable covariant  derivative to be defined 

be low by (3.3) and (3.4). 

Proo f  By using the metric gij we define .4 ± as the orthogonal bundle of .4 ;  then 

.4x x :=  span{A/u} = [ A i u ( x )  0---~-I, (3.2) 
\ Ox t I 

where Aiot :-= giJAot j , and the orthogonal projector on .4 

P : T M  ~ T M ,  ker P = .4±, Im P = .4. (3.3) 

On the fibred product X( .4 )XMX(A)  define 

V v : =  P V ,  V v : ,9((.4) XM X ( . 4 )  ------+ X ( . 4 ) .  (3 .4 )  

Although V v satisfies the formal properties of  covariant derivative (see [Vershik, 1984, 

p.291]), it is not defined on the whole bundle (see also [Koiller, 1992, p.141]). However, 

recalling (2.22), 

[LI i V ~ t  ,, i = = X Ac~(x), 

by (3.4) we obtain 

VV~ = PV~.f = P([L])  = P ( ~ f f a  i )  = O. [] (3.5) 

Remark .  Solutions of (3.5) are affine geodesics, which are not solutions of a variational 

problem of minimum length because V v is not inherited from some Riemannian metric. 

This point will be focussed in Section 4, making a comparison with dynamic equations for 

the same system derived from a nonholonomic variational problem (vak). 

Now, we define a genuine connection on T M  whose covariant derivative V is a proper 

extension of  V v to the whole bundle T M .  This result, due to [Synge, 1928], is used in 

[Benenti, 1987]; we will employ it to characterize the Frobenius complete integrability of 

the constraint subbundle ,,4. 
Let Q : T M  > T M ,  Q = I - P be the orthogonal projection operator on A z ;  

ker Q = A, Im Q = .4±. From (3.4), for every vector field Y E X ( M )  

V v Y  = P V i Y  = ( I  - Q ) V i Y  = v i Y  - Q ( V i Y )  

= v i Y  - V i ( Q Y )  + ( V i Q ) Y  = fTiY - V i ( Q Y ) ,  (3.6) 

where we have defined 

( fTiY) h :=  ( V i Y  + ( V i Q ) Y )  h = yh.., + l-,i~yj + ( V i Q ) t ] y j  = yh.,, + Pi~Y j .  (3.7) 
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Since (Vi Q)jh. is a (2, 1)-tensor, P,.~ := F/~ + (Vi Q)h are the Christoffel symbols of a 
genuine connection defined on the whole bundle; moreover, from (3.6) 

Y Z  e X ( A ) ,  Q Z  = 0 ~ Vi z = V y Z ,  

so V is a canonical extension of V v, since it is independent of the particular choice of Ac, 
defining ,,4. The local expression of Q(=  Q2) is the following: 

Qi k = gij Qjk = gij 17C~#A~jA#k ' 

/7,~ := grSa~rA~s , det(/Tc~#) 5~ 0, /7c~¢~ = ( / 7 _ 1 ) ~  ' (3.8) 

When restricted to 2((.A), the symbols/~i~ have the special form (3.9) 

s -  h O)hZ = h - Q s  (Vi Z) - g h r  lTCL~ A~rA~s( Vi Z)s  s)Z = ( v i  s = 

_= - g h r  Fl~#a~r[Vi (A#sZ s) - ( g iA#) sZ  s ] 

-= ghr 17a~Ae, r (v ia~)s  Z s • (3.9) 

By introducing the deformation tensor of the vector field A~ 6 A' (M),  

Disg = ½[(ViA#)s + (VsA#)i], (3.10) 

we see that, along any kinematically possible motion, we can rewrite (3.5) as 

(Vf j¢) i  = ~i _}_ ~jikjfJ jfk = O, (3.11) 

(Vx-t) i + 17 ~ Drsa Ai~kr k s = 0, (3.12) 

and find the expression of the reaction forces of the constraint along the motion as a con- 
stitutive function of (x, k) by comparison with (2.22), that is 

)~ c~ A~ R i = - H ~  Drs~Ail3~r Jc s . (3.13) 

Note that [Benenti, 1987, p.9] 

Dis ~ ~ 0 4:~ A~ is a Killing vector of the metric gij. 

The connection/~h introduced above allows us to characterize the Frobenius integrability lS 
of the constraint distribution ..4 = ker(A~i). We prove the following proposition. 

Proposi t ion 3.2. . ,4 is a completely integrable subbundle o f T  M ~¢, the 2-form dAd verifies 
dAd(X, Y) = 0, VX, Y 6 X(.A) ¢~ T(X,  Y) = 0, ¥ X, Y c 2((.A), where 7" is the torsion 
o f  the extended connection T'. 

Proof  Define as usual 

7~(X, Y) = VxY - ~ y X  - [X, Y]. (3.14) 

Since, if X, Y 6 X(.A), fTxY = V~ Y = P V x Y  = (I - Q ) V x Y ,  we find 
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7 " ( X , Y )  = P V x Y  - P V ) , X  - [X,  Y] 

= P ( V x Y -  V y X )  - [X,  Y] = P ( [ X , Y ] )  - [X,Y] 
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7"(X, Y) = 0, V X ,  Y E X ( A )  ¢¢, P ( [ X ,  Y]) -- [X, Y], 

i.e. if and only if ..4 is an integrable distribution according to Frobenius theorem. From 

(3.14), we obtain i" referred to coordinate fields 

so, if VX, Y c ?((.4), recalling (3.9), we have 

Tji k ---- gir lTafl[(VjAfl)k -- (VkAf l ) j ]Aar  

: gir]'-letfl[Aflk ' j -- Aflj. k]Aotr : ]-]afl(dAfl)jk A i  

and 

(3.15) 

I ' ( X ,  Y)  = ITC~# d A ~ ( X ,  Y)Ac,  = O, ¥ X ,  Y E X ( . A )  ¢~ dA#IA = O. [] (3.16) 

Remark. Note that the projected covariant derivative V v does not allow to define torsion 

by the usual formula if .A is not integrable since, for the natural candidate torsion T ~' we 

have, for X, Y c A'(A), 

T(X,  Y ) : =  V}Y - V~,X - [X, Y] = P ( V x Y  - V y X )  - [X,  Y] 

= P ( [ X ,  Y]) - [X, Y] = - Q ( [ X ,  Y]) E A ±, 

that is T ~' does not work into P((.A), unlike (3.4). This difficulty, pointed out by Vershik 

[Vershik, 1984, p.292] is here removed by the very use of the canonically extended connec- 

tion F.  

4. Equations of motion of variational axiomatic kind (vak) for 
constrained mechanical systems 

The framework of  the Virtual Work Principle to draw the equations of  motions in presence 

of ideal constraints, is not the only rational scheme ensued by theorists on mechanics. 

Actually, one can take as starting point for a theory of  constrained mechanical systems the 

Hamilton (or stationary action) principle, stating that the dynamically possible motion is 
the one which extremizes a chosen functional F in a suitable class of kinematically possible 

paths joining two fixed points. This amounts to say that the equations of  motion are the 
Euler-Lagrange equations of  a variational Lagrange problem of calculus of  variations with 

differential constraints. For Lagrangian mechanical systems subject to hoionomic or linear 
integrable constraints, the two principles are perfectly equivalent in that they do provide the 
same set of dynamic equations, but for a more general choice of  constraint, i.e. nonlinear or 



306 F. Cardin, M. Favretti/Journal of Geometry and Physics 18 (1996) 295-325 

nonintegrable ones, it is acknowledged, at least from the mid fifties works of [Capon, 1952; 
Jeffrey, 1954; Pars, 1954] that this equivalence is lost and the two formulations split up. It is 

clear that the problem attains to the very foundations of  analytical mechanics and that it can 
be settled only by looking at the ability of both theories to deal with concrete examples. In 
fact, most of  the literature on the subject, known to us, deals with nonholonomic equations 

of motion especially in order to give an intrinsic geometrical formulation of them [Vershik 
and Faddeev, 1981 ] and of nonholonomic conditions [Massa and Pagani, 1991 ], but there 

are anumber  of works [Rumyantsev, 1981; Kozlov, 1982a, 1982b, 1983; Arnoldet  al., 1988] 

devoted to the study of the equations of  motion, for nonholonomic constrained systems, 
deriving from a variational nonholonomic problem or, as the authors [Arnold et al., 1988] 

say, to the study of vakonomic mechanics (mechanics of  variational axiomatic kind). 

Up to now, the problem at issue, especially as far as concrete examples are concerned, 
is far from resolved. However, the study of variational problems with nonholonomic con- 

straints, initiated by [Vranceanu, 1928; Synge, 1928; Vagner, 1940] and continued in the 
works of [Chow, 1939] (see [Vershik and Gershkovich, 1994] for a historical survey) has 
made clear, in a rigorous way, the difference between "straightest" curves, i.e. the mechan- 

ics of  nonholonomic systems, and "shortest", i.e. the variational theory of nonholonomic 

systems, a terminology introduced by Hertz. In this section we first introduce the dynamics 
of nonholonomic constrained systems according to [Arnold et al., 1988]. More in detail, 
we lay down a unifying variational framework; within this, we gain the main result of  vak 

dynamics (Theorem 4.1). Then, in the same framework, we show that (i) the nonholonomic 
equations of motion can be given as solutions of  a conditional extremum problem, (ii) once 

(i) is achieved, the difference between these equations and vakonomic ones (see below 

(4.3)) amounts to a different definition for the admissible varied paths, (iii) the equations 
do coincide for holonomic and linear integrable constraints, and (iv) the reaction forces of  
the constraints in the vakonomic formulation are gyroscopic in the general case. 

Let M be a smooth manifold, L : T M  > • a smooth Lagrangian function, f~ : 
T M  > ~ k functions whose covectors Ofu/O.i¢ i are linearly independent, i.e. 

rk(Ofa/OJc i) = k, as in (2.21). A smooth path x : [tl,t2] ~ M is admissible if and 
only if it satisfies the constraint f~ (x, 2). We first define the variations of  admissible paths. 

Definition 4.1. A variation of the admissible path x : [tl, t2] ~ M is a smooth homotopy 
z : [ - c ,  c] × [tl, t2] > M such that 

(i) z (O, t ) - - - -x ( t ) ,  Vx ~ [tl,t2], 
(ii) z (E , t l )  = x l ,  z(E, t2) = x 2 ,  ¥~ ~ [--c,c],  

(iii) z(E, t) satisfies the constraint fc~ to thef irs t  order in e. 

Let y := x( [q ,  t2]). A variation of x(.) defines a variation vector f ield 

Oz 
W " y C M ~ T M ,  t ~-+ ( x ( t ) , w ( t ) ) ,  w( t )  :=  ~-~E (0, t) 

and 

(4.1) 

rM o W ---- ida,. (4.2) 
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As a straightforward consequence of Definition 4.1 we have the following proposition. 

Proposi t ion 4.1. A smooth section W as in (4.2) is a variation vector field (4.1) along a 

fixed x( .)  if and only if 

(1) W(tl) ---- w(t2) ---- 0, 
(2) ..T'vak(w) = O, ,7  vak ( . ~ a k  ~g-vak~ • = ' ' " , ~ k  ~,where 

..~..vak (W) O f a , ( X , 2 ) w i . q _ ~ ( X , 2 ) ~  i d (Ofu ) 
: '= OX t OX : ~ \ OX i tOi -- [fu]iwi" (4.3) 

5r~ is a linear functional between the linear space X := {t ~-> (x(t),  w(t))  : (x, w) c 

C ~ ( [ q ,  t2], T M ) ,  w(tl)  = w(t2) = 0} and C~( [ t l ,  t2], ~k). Moreover, given a variation 
vector field w, it uniquely defines a smooth variation, whose expression in a local chart is 

z@, t) = x( t )  + w(t)~. We can now state [Arnold et al., 1988, p.32]: 

Definition 4.2 (VAK). The admissible path x(-) is a dynamically possible motion if and 

only if it is an extremal of  the functional 

t2 
g *  

F ---- / L(x ,  2) dt (4.4) 
a t -  

tl 

with respect to every conditioned variation according to Definition 4.1. 

The following theorem of calculus of  variations characterizes the dynamically possible 

motions x(.)  according to Definition 4.2. 

T h e o r e m  4.1. The admissible path x( .)  • [q, t2] ~ M is a conditional extremal for  the 

functional F if and only i f  there exist k smooth functions k ~ " [tl, t2] --+ ~ such that x (.) 

verifies 

[Lli = kc~[fc~]i -k- k a y ( x , 2 ) .  (4.5) 

R e m a r k .  Eqs. (4.5) are called equations of  motion of vakonomic type. It is important to 
stress that vakonomic equations (4.5) can be derived as Euler-Lagrange equations of  an 
unconditioned variational problem for a functional of  type (4.4) with Lagrangian 

£ ( x , 2 ,  X) = L(x,Jc) - k~ fc~(x,Jc), (4.6) 

where the Lagrange multipliers/,  are added independent parameters and 

[ £ k .  = f ~ ( x , ~ t )  = o 

are precisely the constraint equations (2.23). 
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Proof of Theorem 4.1. Let x(.) be an admissible path, z(E, t) a variation of x(.).  Define 

I2 
t ~  

F(E) := [ L(Z(E, t), ~(~, t)) dt. (4.7) 
t /  

tl 

It is a well-known result that 

t2 

dF(E) E=o f dF (w)  := dE w = - -  [ L ] i t o  i dt 

II 

is a linear functional on X. The path x(.)  is an extremal for F,  according to Definition 4.2 

(VAK), if and only if 

ker ,)t--vak _____. ker dF,  (4.8) 

where .T "vak is defined by (4.3). By a well-known theorem of homomorphism of vector 
spaces (see [Jacobson, 1965, p.61]) there exists A : cvak( :=  Im )rvak) ~ •, linear, such 

that d F  = A o ~vak. By Riesz' Representation Theorem on C°°([tl , t2],  Rk), endowed 

with the scalar product ( f ,  g) = f t t  2 f~ga dt, here f a  = f~,  we can single out k smooth 

functions k ~ : [q,  t2] ~ R such that, Vy E C vak 

12 

A(y) = ] k~y~ dt, 
t l  

tl 

so, to every W = (x, w) 6 X, 

dF (w)  = A 0 ~ 'vak(1 /3) ,  

t2 t2 

d F ( w ) = - f [ L ] i w i d t = A o ~ V a k ( w ) = f x ~ { d ( ~ w i ) - [ f ~ ] i w i } d t  

tl tl 

t2 f [ - -  } roFlt=t2 = _ ~ Of~ +)u[fc~] i widt 4- Ja w i l  
oJfi  L O x i  J t = t l  ' 

II 

and thesis (4.5) follows from the application of the fundamental lemma of calculus of  
variations. [] 

The fundamental entry of  the above demonstration is that .~L--vak is a linear functional. 
Bearing this in mind, we now show that nonholonomic equations (2.23) can be obtained as 
solutions of  a variational problem (4.4) for a suitable choice of.7". We first state 

Definition 4.3. A smooth vector field W as in (4.2) is a nonholonomic variation vector field 
along a fixed y if and only if 

(i) W(tl) = w(t2) = 0, 
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(ii) )rOb (w) = 0, f ch = (9~1 h . . . . .  ~ h ) ,  

where 

O f o r .  . .  i 
fCh(w)  := -~xi tX, X )W . (4.9) 

We recognize in (ii) the variational analogue of Chetaev' conditions (2.21 ). As an imme- 
diate consequence of Definition 4.3, we have the following theorem. 

Theorem 4.2. The admissible path x (.) is a conditional extremal f o r  (4.4), where nonholo- 

nomic variations according to Definition 4.3 are taken into account, i f  and only i f  there 

exist k smooth func t ions / z  ~ : [tl, t2] ~ M such that 

[L]i ----/_tu ~ ( x , k ) .  (4.10) 

Proof  Utilize f e b  instead of .~-'vak in the proof of Theorem 4.1. Then, there exists A = 
(/z I . . . . .  /z k) : cCh( :=  I m f  ch) ~ R such that 

dE : A o .)t-'Ch, 

and ,¥  W = ( x , w )  E X, 

t2 

dF(w)  = f [L]iw i 
tl 

We conclude by using again the fundamental lemma. 

t2 

f .Of. 
d t - - - - A o . T ~ h ( w ) = J #  O.f iwidt .  

tl 

[] 

We now particularize the expression of fvak and )rCh for holonomic and nonholonomic 

linear integrable constraints. 
Holonomic constraints. Their local expression is ~b/3 (x) = 0,/3 = 1 . . . . .  k, so f/~ (x, k) = 

(pfl, i(X)JC i = 0 is the kinematical constraint associated to q~t~- Then, from (4.10) and (4.5) 
respectively, since [f~]i = 0, we have that 

[L]i = Iz~qb~, i are the nonholonomic equations, 

[L]i  = ~fl~fl, i are the vakonomic equations. (4.11) 

They generate the same dynamics under the identification/z ~ = ~fl. 
Integrable linear constraints. Their local expression is (see (2.15)) 

fc~(x,Jc) = a~(x)dpfl, i ( x ) x  i = O. 

By a straightforward computation, we have in the vakonomic and nonholonomic case re- 
spectively 

d (~.Ua~)¢/~ lt~b/~, i ,  [L]i = ~ , i = 

[L]i = #~a~¢~,  i = m~¢~, i. 
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In both the holonomic and linear integrable cases, the redefinition of Lagrange multipliers 

by time derivative or by means of the matrix a~, does not alter the structure of the dynamical 

equations. Finally, for linear nonintegrable constraints, the vakonomic equations are 

[L]i = ~aAai (x) -q- )~  dAce (J¢, ")i. (4.12) 

From Ace i (x)J¢ i = 0,  dAce (.~, .~) = 0, it is immediate to recognize their gyroscopic character. 

In Section 5, we will continue the study of  linear nonintegrable constraints. 

5. A zero curvature condition for the integrability of constraint distribution in 
vakonomic dynamics 

Let (M, L, .,4) be a Lagrangian system subject to linear nonintegrable constraints given 

by a k-codimensional distribution ,A on T M ,  whose local expression is Acti ( X ) J f  i = O, Ol = 

1 . . . . .  k. Define A / : =  giJAcej, where g is a Riemannian metric, e.g. induced by the kinetic 

energy component of  L, and consider the k-dimensional orthogonal distribution 

x ~ M, x w-> .Ax ± :=  span{A~} = ( A / ~ x / )  . (5.1) 

Note that Yx 6 M, .A~ ~9 .Ax = TxM.  We make the following hypotheses: 
(H. 1) The smooth distribution ,,4 ± is Frobenius integrable. 

Since dim ,A ± = codim ,A, hypothesis (H. 1) is very reasonable when the system (M, L) is 

weakly constrained: in the limiting case codim ,,4 ---- 1, (H. 1) is trivially satisfied. 

Denote with M / A  ± the set of  leaves of the foliation associated to the distribution .,4 ± 

and let rr : M --+ M / A  ± be the map x ~ {leaf through x }. Proposition 5.1 shows the local 

structure of  the foliation. 

Proposition 5.1 ([Molino, 1988, p.15]). To every x ~ M there exists a neighbourhood U 

o f  x which is a simple set o f  the foliation,  that is, (i) Jr : U ~ U/ ,A  ± is a differentiable 

surjective submersion, (ii) the leaves (level sets o f  zr ) are connected, (iii) U / A ± is a ( n - k )- 

differentiable manifold. 

This, together with the metric g, is all we need to define an Ehresmann connection 
[Ehresmann, 1950] on the fibre bundle Jr : U ~ U / A  ±. We proceed as in [Marsden et al., 

1990]. The vertical subspace is V U  :---- ker Trr = A ± = span{Aa}. To define a connection, 
we define a horizontal subspace H U ,  supplementary to V U  by means of  g, 

H x U  :=  (~4~) L = ,Ax = ker{Ace}, H x U  ~ VxU = TxU, (5.2) 

so Y X  c TxU, X = X h + X v, where X h :=  h(X), and X v :=  v ( X )  are the horizontal, 

respectively, vertical projections of X. The vertical projector, v : T U > V U, kerv = 
H U ,  is the connection 1-form; to express v components, instead of  using the base of  T xM 

in a local chart adapted to the submersion, we use the bases {O/Ox i } and {Ace} of  T U  and 
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V U  ---- .4± respectively. By comparison with the projector Q, introduced in (3.8), we derive 

immediately 

v~(x)  :=  a~  = 17U~A~i . (5.3) 

Then, by using the well-known Cartan formula [Kobayashi and Nomizu, 1963, p.77] we 

define the curvature 2-form of the connection v: VX, Y ~ P((M) 

S-2u(X, y)  :=  dvc~ ( xh ,  yh)  = _vc~ ([xh ,  yh]) = Flag dAf l (X  h, yh).  (5.4) 

By means of  v and ~ ,  we rewrite vakonomic equations (4.12) of  last section and the 

constraint equations as follows: 

Ac~i(x)Jc i = 0 ¢¢, Jc E .4x = HxU ¢~ v(x)Yc = 0, (5.5) 

[L](.) = (/2, v(.)) + (#, I-2)(.~, h(.)) + (#, dA)(k, v(.)), (5.6) 

where #~ : = / 7 ~ .  ~,/2~ :=  H ~ L  ~, (/2, v(.)) i : =  ~c~l'1al~l-[SgAsi = ~aAc~ i and (.,-) is the 
pairing between R k and R k*. 

On the one hand, the horizontal distribution x ~ Hx U, locally defined in (5.1), does 

coincide on U with the smooth distribution .4; since the intersection of  two simple sets is 

a simple set, it is correctly defined on the whole manifold M. On the other hand, since the 

diffeomorphism zr between H U  and U / . 4  ± is merely a local one, we can only lift paths 

that lies wholly inside U / . 4  ±. However, thanks to its local character, we can characterize 

the integrability of  the distribution .4 in terms of  the curvature f2 (strictly speaking, S21u) 

defined above. 
By invoking the Frobenius criterion of  integrability, we lay down the following proposi- 

tion. 

Proposition 5 . 2 . . 4  = H M  is an integrable distribution ¢~ VX,  Y c 2((.4), [X, Y] 

A'(.4), i.e.VX, Y horizontal vector fields, their Lie bracket is a horizontal vector f ield ¢~ 

VX,  Y E 2((.4), - v ([X,  Y]) = ,f2(X, Y) = 0 ¢~ ~2 - 0. 

Recall the projected connection/n on M defined in Section 2 and the associated torsion 

T. Putting together Propositions 5.2 and 3.2 we have the following proposition. 

Proposition 5 . 3 . . 4  is an integrable distribution ¢¢, dA~IA -- 0, t~ = I . . . . .  k ¢~ ~A = 

0 ~ = 0 .  

Note that, in order to characterize the integrability of  -4, the torsion T of  P which is 
a linear connection defined on the linear frame bundle F ( M )  --~ M with structure group 
G = GL(n ,  ~) ,  plays the same role of the curvature $2 of  v which is a locally defined 

connection on the fibre bundle U ~ U/ -4  ±, U C M. 

In Section 6, by adding suitable hypotheses on distribution .4 ± , we will be able to make 

the local fibration U ~ U / . 4  ± into a global fibration M ~ M / . 4  ± which does coincide 
with the one M ~ M / G ,  to be defined through a suitable abel±an Lie group action • : 
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G × M --+ M. Then (M, M / G ,  G, Jr) is a principal bundle and we can introduce notions as 

the accessibility set of  the constraint horizontal distribution, .4 = H M ,  or the holonomy of 

a kinematically possible, i.e. horizontal, path. These are useful tools in the study of  global 

properties of  nonholonomic linear nonintegrable constraints. 

6. Principal bundle structure for constraints whose orthogonal 
distribution is involutive 

Let (M, L, -4) be a Lagrangian mechanical system, subject to linear nonintegrable con- 

straints .4. By hypothesis (H. 1) of  Section 5, we regard the constraint distribution .4 as the 

horizontal subspace of  an Ehresmann connection v and we are able to describe the reaction 

forces of  the constraints by the very use of  the related curvature I2. Note that this analysis 

of  the constraints is local, since we are able to describe the geometrical and mechanical 

behaviour of  the constraints only in a neighbourhood of  a point x in M. The following 

theorem allows one to study the global properties of  a leaf of  the constraint foliation. 

Theorem 6.1 ([Guillemin and Sternberg, 1984, p.209]). Let F be a smooth foliation and 

let L be a compact leaf whose holonomy group is trivial. Then there exists a neighbourhood 

U o f  L which is the union o f  leaves o f F ,  and a disk D in ~k, where k is the codimension 

o f F ,  and a diffeomorphism f : L x D ~ U such that flL×{0} = idL. 

In particular, if all the leaves of  F are compact and have trivial holonomy, (for example 

if they are simply connected) then F is afibration (see Definition 6.1). 

Definition 6.1 ([Dieudonn6, 1974, p.74]). A smooth fibration is a triple (M, B, 7r) where 

M and B are smooth manifolds, Jr a smooth surjective map from M onto B verifying the 

following condition of  local triviality: 
Vb ~ B there exists an open neighbourhood U of  b in B, a smooth manifold F and a 
diffeomorphism ¢p : U x F --+ zr-1 (U) such that zr(qg(y, z)) = y for every y ~ U and 

z ~ F .  

The hypothesis of  compact leaves is necessary to measure the distance between two 

neighbouring leaves by using geodesics of  some Riemannian metric. It can be dropped if 
M is endowed with a bundle-like metric [Reinhart, 1959, p.122], that is a metric g on T M  
whose expression in a local chart x i = (z I . . . . .  zd-k,  yi . . . . .  yk) (leaves are y'~ = const.) 
is 

ds2 = gij dxi dxJ = grA  (Z, y ) w r  w a + ga/3 (Y) dY ~ dY E, (6.1) 

where {w e (z, y), dy a } is a base of  T~z ' y)M. In this case, the following theorem holds. 

Theorem 6.2 ([Hermann, 1960, p.445]). Let M be a smooth manifold with a complete Rie- 

mannian metric which is bundle-like with respect to a foliation F. I f  all the leaves are closed, 
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then M / F  is a metric space and the application x ~ q~(x) = {leaf through x} is an open 

and continuous map. I f  all the leaves have trivial holonomy, then M / F is a smooth manifold 

and dp is a surjective submersion. Hence ( M , M / F , qb ) is a fibration. 

As an immediate outcome on the description of the trajectories of  constrained systems, 

we see that if the constraint distribution gives rise to a foliation, then we have only a local 
equivalence with a holonomic system, because in the local fibrations (see Proposition 5. l ) 

which describe the foliation at any point x ~ M we are not able to decide whether two local 

leaves belong to the same global leaf or not. On the contrary, if we deal with a fibration, 

related to the constraint distribution, then the kinematically possible motions are precisely 

the ones along a fixed connected fibre, which is an embedded submanifold L of  M, that we 

can express as a level set of the submersion zr. The last property is equivalent to say that the 

normal bundle to L, defined with the metric g, which we know to be the bundle of  reaction 

forces, is trivial [Guillemin and Pollack, 1974, p.97] (see also Section 8). It is worthwhile 

to notice that by using the above outlined scheme of fibrations, Marle formulates a theory 

of  active constraints [Made, 1991 ]. 

We now introduce a global group action G x M ~ M, where G is abelian, such that 

(M, M~ G, G, zr) is a principal fibre bundle, and a connection on it whose horizontal space 

is precisely the constraint distribution ,4 coinciding with the mechanical connection in 

[Marsden, 1991, p.50]. Let (M, L, ,4) be the Lagrangian constrained mechanical system in- 

troduced above and .AxE ---- span{A~ (x)}, where A / (x) = giJAaj (x), a local representation 

of the orthogonal distribution (5.1). Besides hypothesis (H. 1), we make the stronger 

(H.2) The k smooth vector fields A,~ are commuting, i.e. [A~, Ate] = 0. 

Obviously, (H.2) is a special case of (H. 1). Moreover, (H.2) is trivially satisfied if k ----- 1, 

and it is a mild request if the codimension of the system is low. Let ~ : I C R x M --+ M 

be the flux of the o.d.e. 

d x  i 

dr  ~ = Ai ( x ) .  (6.2) 

By (H.2), they are commuting, i.e. q~r% o ~ = ~t~ r~ re o q~r"" Now we suppose that 
(H.3) Solutions of o.d.e. (6.2) have maximal extension to the whole R. 

Note that (H.3) is satisfied if, for instance, M is a compact manifold. (H.2) and (H.3) together 

allow to define a global smooth action of  (R k, +), abelian, on M 

l o ~kk (x), • ( r , x )  :=  q~, o - . .  

( r , x )  ~ ~ ( x )  = q~(r,x), 

~ : N k  x M - - +  M, 
(6.3) 

since we have trivially q~0 = idm, @(r + p ,x )  = @(r, @(p,x)) .  Moreover, we identify 
the leaf of  ,,4 ± through x with the orbit Rkx :=  { ~ ( r , x ) "  r ~ R k} through x and .A~ 

with Tx(Rkx).  By definition, q~ acts transitively on M but not freely in the general case. 
However, starting from q~, we can define a free group action by means of  the following 

theorem. 
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Theorem 6.3 ([Arnold, 1978]). Let M be a smooth manifold, and • : R k × M ~ M be 

a smooth nonfree action o f  (R k, +) on M. Then 

(a) the isotropy group f'y o f  q~ is the same Yy  E ~kx ,  

(b) i f  dim f'y = r, ~ k x  is diffeomorphic to -~r × ~ k - r  := G (abelian) where ~r is the 

r-dimensional torus, 

(c) if dim I'x = r Yx ~ M,  there exists a free action q/ : G × M --+ M whose orbits do 

coincide with the ones o f  q~. 

Now we have made zr : M ---> M~ G into a fibre bundle, with G acting freely and transi- 

tively on the orbits. To make ~r : M ~ M / G  into a principal bundle (see [Kobayashi and 

Nomizu, 1963, p.50]) we need the local trivializability, that is to say YU C M / G ,  Jr-1 (U) 

is diffeomorphic to U × G. This is afforded by the following theorem. 

Theorem 6.4 ([Bourbaki, 1958, p.63]). Let G be a Lie group and G × M ---> M be a group 

action. I f  

(H.4) G acts properly and freely on M and 

(H.5) Vx E M,  the map g w-> gx  is an immersion o f  G in M, 

then ( M,  M / G, G, zr ) is a principal fibre bundle. 

We are ready to lay down the following proposition. 

Proposition 6.1. Suppose hypotheses (H.2)-(H.5) to hold. Then, with reference to the con- 

straint distribution .4, we have the fol lowing chain o f  equalities: 

.A~ = ker Txzr = Tx(Gx)  = {Xo(x): a E G} = VxM, (6.4) 

where G is the Lie algebra o f  G and Xa(x )  E TxM is the vector f ield whose infinitesimal 

generator is a E G: 

s i  :~- d (llleat(x))i t = 0  i t~ = Ac~a , ct = 1 . . . . .  k, a 6 ~ ( =  ff~k). (6.5) 

Recall that .Ax ~ .A~ = TxM. If we define 

H x m  := .Ax = ker{a~i(x)} ,  TxM = H x M  @ VxM, (6.6) 

then .A is the horizontal subspace of a connection on the principal bundle rr, which coincides 
with the local one introduced in (5.3), if and only if (see [Kobayashi and Nomizu, 1963, 
p.63]) 

Txq/r(Ax)  = .Aq~(x), Yx c M, r c G. (6.7) 

In our setting, condition (6.7) reads 

3- 3_ (H.6) Txq/r(c4X) = (.Aq, (x)) . 

Such a hypothesis (H.6), which involves the group action, the metric and the constraint, can 
also be written as 
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~r* (x)Aa (x) = Hap (qJr (x))  17p# (x)A# (x). (6.8) 

Remark. The connection (6.6) is precisely the mechanical connection of  Marsden [Mars- 

den, 1991, p.50] on (M, g) whose construction (sketch) is reported below: 

Define a connection on M by a connection 1-form u : T M  --~ G by 

ot : :  /7-1 o J o F L  (6.9) 

where 

F L  : T M  ~ T ' M ,  F L ( x , 2 )  = (x,p) ,  (6.10) 

is the Legendre transformation, 

J • T * M  ~ ~*, ( J ( x , p ) , a )  p(Xa)  , u = =piAc~a , Va E ~  (6.11) 

is the momentum map [Marsden, 1991, p.52], 

/7 • ~ ~ G*, ( /7(x)a ,b)  = g(Xa,  Yb) -~ gijAiac~AJ~b # =/7~aC~b #, (6.12) 

is the locked inertia tensor (that coincide with /7~# introduced in (3.8)). Finally, by the 

above formulas, we have the local expression of c~ 

(Or(X)) p : :  FlPaA~ri ( :  v/p) (6.13) 

that coincides with (5.3). 

We refer to textbooks of  differential geometry for the notion of  holonomy of a connection. 

We simply recall here its construction to look at its mechanical interpretation for the case 

at issue. The assignation of  a connection 1-form c~ : T M  ~ G uniquely defines a global 

horizontal lift l : T B  --~ H M  where (B = M / G ) .  We can then lift a path y in B 

(eventually closed) to a path ~ = l (y)  which is horizontal, i.e. ~(s) c H~(s)M, that is 

kinetically possible. If y : [0, 1] ~ B is a loop, x0 ---- ~(0) and xl = ~(1) are two, not 

necessarily coincident, configurations of  the system allowed by constraints that lie on the 

same fibre ~r- l (y(0)) ,  which is an orbit of  qJ. There exists therefore a r 6 G such that 

tP(r ,x0) : xl. The element r E G is called the holonomy o f  the loop y in x0. 
There is an increase in literature devoted to the study of  applications of this subject; let 

us quote, among others, the isoholonomic problem, i.e. to find extremals of a given cost 

functional (e.g. the kinetic energy) on the set of  admissible (i.e. horizontal) paths with fixed 

holonomy (cf. [Montgomery, 1990] and the bibliography quoted therein). 

7. A comparison between nonholonomic and vakonomic dynamics in the light of 
Chow, Ambrose-Singer and Hopf-Rinow theorems 

Solutions of  vakonomic equations (4.5) or (5.6) are extremals of a variational constrained 

problem with fixed initial and final configurations, say x and y. Of course, the problem is 
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well-posed when, among other requirements, y belongs to the accessibility set of x; more 
precisely, let M be a smooth manifold, and .4 be the constraint linear distribution. We state 

Definition 7.1. To every x 6 M, the accessibility set of x is 

M(x)  = {y ~ M: 3 F : [O, 1] --> M, F E K C  1, Y(O) = x, F(1) = y, ~) E.4}. (7.1) 

Denote with/2(.4) the subalgebra generated by .4, that is the minimum subspace of 2"(M) 
containing 2"(.4) and all the finitely iterated Lie products of vector fields in 2'(.4). Z~(.4) 
defines an involutive distribution, 29(.4), possibly of nonconstant dimension. If dimension 
of 29(-4) is constant, by Frobenius theorem (Section 2), it is integrable, and M(x)  is precisely 
the maximal integral manifold of 29(.4) through x [Sussmann, 1973]. The accessibility set 
of a typical distribution, even singular, can be investigated by the following theorem [Chow, 
1939; Sussmann, 1973]. 

Theorem 7.1 (Chow). Let M be an n-dimensional smooth manifold, ..4 a possibly singular 

distribution. I f  dim D(-4)(x) = n, then M(x)  is an open set containing x; if moreover 

dim 29(-4)(x) = n, Vx E M, then M (x ) = M (and.4 is called a completely nonholonomic 

distribution). 

It is now clear that the classical picture of nonholonomic constraints as constraints which 
do not affect the possible configurations of the system can be made rigorous in terms 
of the accessibility sets of the constraint. If the configuration space M has a principal 
bundle structure, and the constraint distribution is the horizontal distribution ,A = H M  of a 
connection, we can easily compute D(-4) by using the classical Ambrose-Singer theorem. 

Theorem 7.2 (Ambrose--Singer [Kobayashi and Nomizu, 1963, p.89]). Let (M, M / G ,  G, 

Jr) be a principal bundle, with M /  G a connected and paracompact manifold; denote with 

A = H M  the horizontal subbundle of  a connection, G(x)  the holonomy group at x of  the 

connection, M (x ) the holonomy bundle (which is precisely the accessibility set of-4 in x ). 

Let Gx be the Lie algebra of  G(x). Then Gx is the following image of  the curvature 2-form 

when restricted to the horizontal distribution in the accessibility set o f  x, that is, 

Gx = {I2(y)(X,Y):  y E M ( x ) , X , Y  E HyM} < G. (7.2) 

From the proof of Ambrose-Singer theorem [Kobayashi and Nomizu, 1963, p.89] we 
easily derive: 

29(nM)(y)  = HyM ~ a(~y)  = Ty(M(x)),  Vy ~ M(x) ,  (7.3) 

where a(Gy) = {Xa(y): a ~ Gy} and Xa is the vector field whose infinitesimal generator 
is a ~ Gy. Moreover, since M is a disjoint union of holonomy bundles M(x) ,  which are all 
isomorphic, we have dim M(x)  = const. Yx c M. Then 

dim 29(HM)(x)  = dim ( M / G )  + dim ~x = dim Tx(M(x))  = const. 'v'x ~ M, 
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and D(.4) is an involutive distribution of constant dimension, hence Frobenius integrable. 

The following corollary is a straightforward application of Chow's theorem. 

Corollary. I f  ~r(~x) = VxM, that is if ~x = ~, then dim 79(-4) = n and M ( x )  = M. 

We are now concerned with the existence of solutions y of the variational problem 

between mutually accessible, fixed configurations x, y c M: 

inffLdt, L = g(y,  ~)1/2, y (to) = x, iV (tl) = y, )) c .4. (7.4) 

For nonholonomic constraint distributions, this is stated in terms of the following version 

of the classical Hopf-Rinow theorem. 

Theorem 7.3 (Hopf-Rinow [Vershik and Gershkovich, 1994, p.37]). Let M be a smooth 

complete Riemannian manifold, -4 a completely nonholonomic distribution, i.e. 

dim 79(.4) = n. Then, to every pair x, y c M there is a piecewise smooth geodesic with 

c .4joining them. 

Remind that the above geometrical variational problem (7.4) is equivalent, up to reparame- 
trizations, to the mechanical one with L = ½g(y, ~'). Therefore, there exists the mechanical 

solution too and we can gain smoothness for it by restricting ourselves to a suitably small 
neighbourhood of x. This attention avoids also the occurrence of conjugate points phenom- 

ena and consequent multiplicity of solutions, a matter explained by the Morse theory. The 
following considerations concern the vakonomic and nonholonomic formulations of dynam- 
ical equations under the hypothesis of completely nonholonomic constraint distribution A; 
(A) As seen in Section 4, vakonomic equations are the Euler-Lagrange equations of an 

unconditioned variational problem. The existence of solutions between accessible 

configurations, given by Hopf-Rinow theorem, allows us to give two equivalent for- 

mulations of the equations of motion: 
(1) as a variational problem, see (4.4), with boundary conditions x, y assigned, that 

is 2n parameters, 
(2) as a Cauchy problem, see (4.5), for the Euler-Lagrange equations deriving from 

(1) with assigned initial conditions x (to), ~ (to) c Ax(t0), that is 2n - k parameters 
plus k initial values o f  the Lagrange multipliers )~(to), hence 2n parameters as 

in (1). 
Actually, vakonomic equations (4.5) can be given the normal form with respect to x and 

L (see [Vershik and Gershkovich, 1994, p.39]), and the above assignment (2) means to fix 
the reaction forces of the constraint in the initial phase space point x(to), :?(to). In a different 
way, in nonholonomic nonvariational formulation of dynamics, the Lagrange multipliers 
can be expressed as constitutive functions of (x,.t) as shown in Section 2, so the Cauchy 

initial data assignment involves only x(to), it(to) ~ AxU0). 
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(B) The lack of a standard variational formulation of nonholonomic equations (2.23), 

implies that the relation between dynamical accessibility, i.e. dynamically possible 
motions and geometrical accessibility, i.e. kinematically possible motions, cannot be 

investigated with the aforementioned theorems. Recall that nonholonomic equations 

are geodesic of the projected connection (4.6) which is not Riemann-metrizable gener- 
ally, so the equations are not identifiable with those coming from a variational problem 
of minimum length (they are only affine geodesic). This is confirmed by the fact that, in 
the variational problem of Theorem 4.2 of Section 4, which gives rise to nonholonomic 

equations, the varied paths do not satisfy the constraint. 
For completeness, we rephrase here a theorem in [Vershik and Gershkovich, 1988] which 

shows that solutions of  nonholonomic and vakonomic equations are in the general case to- 
tally different. Let (M, L) be as in Section 3 and let ~/v be a geodesic of the projected 

connection, i.e. solution of nonholonomic equations (3.5), where v E Sx is an initial kine- 

matically possible unit vector, Sx = {v 6 Ax, Ilvll = 1}. Let Yv, oJ be the solution of 
vakonomic equations (4.12) for v c Sx and let w = ~,"A,~ 6 A ± for a given choice of the 

initial value of the Lagrange multipliers. Denote by B the set of points v ~ Sx for which 
there is a choice of w such that at x the germ of y~ coincides with the germ of y~, ~o. 

Theorem 7.4. Suppose ,4 is a distribution in general position. Then, for  some open, every- 

where dense subset o f  the space of(kinet ic  energy) metrics, B is empty. 

8. A global geometrical setting of holonomic constraints in the framework of 
vakonomic dynamics by means of Poincar6 duality 

This section is concerned with a foundational approach to the description of holonomic 

constraints. Consider a Lagrangian holonomic system L (x, ~t) on T M, where M is a smooth 

manifold. If a new holonomic ideal constraint j : S ~-~ M is added, the standard way to 
deal with it is via the classical line of thought (due to Lagrange): the resulting system is still 

Lagrangian, where 

LS :=  L o T j  : T S  ~ ~.  (8.1) 

In such a formulation, the description of reaction forces is obviously absent. Since we wish 
to describe them,  we have turned to the alternative scheme of Lagrange multipliers. Briefly, 
as before, the constraint is geometrically defined by the level set of  suitable smooth local 
functions ~0,~ (xi), ot = 1 . . . . .  k, i = 1 . . . . .  n; the parameters describing the mechanical 
system are the old variables x plus the Lagrange multipliers ~., and the new Lagrange 

function is 

/2(x,~.,.~, ~.) :---- L ( x , ~ )  + ~.°e~oot(x). (8.2) 

Although the Lagrangian function (8.2) could be interpreted as a generalized Lagrangian 
generating function (Morse family) on T M  in the Tulczyjew sense (see [Benenti, 1982] 
and the bibliography quoted therein), we have already remarked that neither the global 
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meaning of  (8.2) nor the tensorial character of  )~ is clear. In other words, if S cannot be 

given as a level set of  a global function defined in some open neighbourhood of  S in M, 

then E in (8.2) is not a scalar invariant function; this requirement for S, i.e. S -- ~0- l (0), 

is a severe topological condition; it holds if and only if the normal bundle of S (for some 

Riemannian metric on M, e.g. the kinetic energy one) is trivial (see [Guillemin and Pollack, 

1974, p.77]). A generalization of  the above hypothesis on S leads us into the hard task of 

the topological characterization of  trivial normal bundles. This difficulty is illustrated by 

the following classical theorem on the subject. 

Theorem 8.1 ([Hirsh, 1988, p.79]). Ever 3, vector bundle over a contractible paracompact 

space is trivial. 

We might enlighten the latter homotopic hypothesis by a homological argument. In par- 

ticular, we have in the mind to consider constraint manifold S whose homology is not trivial. 

This choice seems to be adequate for a number of reasons: 

(a) If, for example S = ~0 -1 (0), S orientable, dim S -- dim M - k, where ~0 is defined on 

the whole manifold M, then S is a bounda~ of some Y2, e.g. setting I2 = {x 6 M: 

~pa(x) > 0, ot = 1 . . . . .  k} we have S = 0H,  and, as a straightforward consequence, 

the Poincar6 dual cohomological class of  S (see Appendix A) is trivial. Indeed, let the 

closed k-form 77 on M be a representative of  the Poincar6 dual class of  S, 0 6 [r/s] E 

Hk(M);  By definition, for every n - k closed form o9 6 H:~-k(M) one has 

f og A r/ = f j* og. (8.3) 

M S 

Now, by using Stokes theorem 

S 012 S2 S2 

and we have that [r/s] vanishes; in the case k = 1, [r/s] contains the exact form dqg, 

which enters in the description of reaction forces as given by the Euler-Lagrange 

equations for £ in (8.2). 

(b) The above point (a) suggests that the Poincar6 dual of a homologically nontrivial one- 

codimensional constraint S is a tool that might allow us to describe the reaction forces 

by means of  closed 1-forms Os globally defined and with compact support contained in 

a tubular neighbourhood of  S, which generalize the exact local 1-forms d~0. Moreover, 

when we describe the reaction forces of  a constraint by using a nontrivial Poincar6 

class, we are sure to deal with a manifold which is not a boundary, and therefore 

that cannot be the level set of  a unique function ~0 defined on the whole M. The last 
statement follows from de Rham and Poincar6 dualities. 

(c) The description of reaction forces by the i-form r /6  [r/s] has a precise global geomet- 

rical sense, and the choice of  a particular representative r/, together with its compact 

support, corresponds to the assignation of  the physical zone of  influence of  the con- 

straint. 
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The latter consideration is a promising starting point for a theory of  realization of con- 

straints. Briefly, one generally considers certain asymptotic procedures of  realization of the 

new holonomic constraint S, e.g. by means of  a sort of  penalty method: 

/2E (x,~t) :=  L(x,Jc) - (1/2E)(~o(x),~o(x)), E --+ 0 +, (8.5) 

where (,) is some nondegenerate bilinear form on •k and S = ~0 -1 (0) as above. 

Note that a geometrical desingularization of the Euler-Lagrange system related t o / ~  is 

given by (see [Cardin, 1991]): 

L ,  (x, /z, ~t, /2) :=  L(x ,  Jc) + ½e(/z,#) - (#,~0(x)). (8.6) 

Indeed, on one hand, 

[/2~1i = ]Lli + - ,~o(x) = O, (8.7) 
E 

on the other hand 

[L,] i  = [L ] i  -I- VZ, -"~xi / = O, 

[L+]a = ~#~ - ~0a(x) = 0, (8.8) 

hence we obtain precisely (8.7). Furthermore, 

lim L~ = L0 = / : ,  (8.9) 
E--+0 + 

where the last equality holds by recognizing the multiplier/z of  L0 to be the multiplier ~. 

up a sign. 

The analytical prob lem-  that is when and in which sense the solutions of Euler-Lagrange 

equations of/2E tend to the solutions of  12, as E ~ 0 + - of  the realization of  constraint by 

asymptotic procedures is widely treated (see [Benettin et al., 1987, 1989] and the literature 

quoted therein). 
By reconsidering the above asymptotic procedure, we notice that the choice of  the con- 

finement potential ( 1/2E) (~0 (x), ~0 (x)) i s highly arbitrary and therefore it i s natural to look 

for a geometrical, global and intrinsic class of  asymptotic realizations. 
This aim can be pursued, in our opinion, by the very use of  the vakonomic dynamic 

approach coupled with the use of  the cohomological Poincar6 class [r/s] in order to assign, 

in a physically meaningful way, the reaction forces of  the holonomic ideal constraint S, 

with codim S = 1. 

We proceed in a axiomatic way: to the smooth orientable manifold S we associate its 
Poincar6 dual [r/s], which we assume to be nontrivial, since we left aside the trivial case 
when S is a boundary. We postulate that, for a fixed choice o f  the 1-form r/ 6 [r/s], the 
constraint is described by 

r/i(X).~ i : O, (8.10) 
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and the dynamics is the one defined by the Lagrangian 

~(x,~t, ()  = L(x,~)  - (r/i(x)J¢ i, (8.11) 

SO the corresponding dynamical equations are (dr /=  0) 

[ £ ] i  : 0: [L]i : ~r/i(x),  

[~]¢ = 0: r/i (x)~t i = 0. (8.12) 

This formulation has the following remarkable features: 

(i) ~ is globally defined on M in a rigorous geometrical way. 

(ii) When S = ~0-1(0) for some globally defined ¢p on M, then we obviously choose 

r / =  dq9 and get back the complete description of vakonomic dynamics as in (4.11 ) by 
identifying X with (.  

In the general case (possibly [r/s] :~ 0), we fix an arbitrarily small tubular neigh- 
bourhood N of S in M (if we are given a Riemannian metric), and we can find a 

representative r/of [r/s] whose support is contained in N; this gives a concrete mean- 
ing to the Localization Principle. Moreover, it represents the topological equivalent of 

the analytical asymptotic realization procedure, since we can shrink the tubular neigh- 
bourhood N to S, finding always a suitable representative. Pictorially, in M\{supp r/}, 

the system behaves as an unconstrained one, whose trajectory x(t) verifies [L]i ~- O, 

but inside {supp 1/} the reaction force of the constraint, given by the right-hand side of 
(8.12), bends the trajectory (see (8.10)) to stay inside the fixed neighbourhood N. By 

shrinking N to S, we have the asymptotic topological realization of S. 

(iii) 

9. An Ehresmann connection on a principal bundle for the vertical rolling disk 

Consider a homogeneous disk D of unit mass and radius r, rolling without sliding and 

leaning on a plane. Let O be the origin in the plane and refer the system to coordinates 
z = (x, y, ~0, 0), where (x, y) ~ ~2 are the coordinates of the point P of contact between the 

disk and the plane, and (~0, 0) are respectively the angle between the x-axis and the vector 
O P, and the angle between the vertical axis, orthogonal to the plane, and a fixed radius of 
the disk. The configuration manifold is then M = ~2 × 7 2 .  Let C be the centre of the disk 

and w the angular velocity of the rigid body D. The condition of rolling without sliding 
imposes to the system the following nonholonomic linear nonintegrable constraint 

Vp= V c + w A C P = O ,  (9.1) 

equivalent to the system of two equations, linear in ~, 

A li (Z)Z i = J¢ "~-rO c o s  ~o ---- 0 ,  ( 9 . 2 )  

A2i (z)z  i = P + rO s i n  ~0 = 0, 

where A1 = (1,0,0, rcos~0) ~ T'M, A2 = (0,1,0, rsin~0) 6 T*M are two linearly 
independent 1-forms, globally defined on T M, describing the constraint as in (2.14). Denote 
by I the inertia tensor of D; the Lagrangian of the disk is 
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L = T = I { V c .  VC + o9. Ico} 

---- 1{.~2 d- 92 d- lr2(~b2 -I- 202)} = lg ( z ) i j z i zJ ,  (9.3) 

where • is the scalar product in R 3, and g(z) = Diag{ 1, 1, r2/4, r2/2} is the (diagonal) 

kinetic energy matrix. In the sequel we endow M with the metric g instead of the standard 
Euclidean one. Note that (9.2) defines a 2-dimensional distribution (of virtual displacements) 

,A = ker{A1, A2}. Proceeding as in Section 5, we define the orthogonal distribution ,A ± by 

cti z ~ ,Az -L := span{Al(z) ,A2(z)}  = (A (z)-~zi), (9.4) 

where Ac~i(z) : =  gij(z)Ac~j(Z), ot = 1,2 and  gij = g~jl. In particular, 

A 1 ---- ( 1 , 0 , 0 , 2 / r  cos~p), A 2 = (0, 1 , 0 , 2 / r  sinqg). 

By direct calculation, one proves the following proposition. 

Proposition 9.1. The vector fields A ~ E P( (M) are commuting, i.e. 

[A~,A ~] = 0, t~,~ = 1,2. 

As a consequence, the distribution .,4 ± is obviously Frobenius integrable and the system 

(M, g, L, .A) at issue verifies hypothesis (H.2) of  Section 6. Consider then the flux of the 
o.d.e. (6.2) for the present case. It is easy to see that (6.3) defines a group action q5 : 
(~2, + )  x M -4 M, (r,  ~) ~ qor(~) = z, whose expression is 

X : = 2 - ' [ - ' g  1, 

y : = p + r  2, 
~p := ~b, (9.5) 

0 :=  0 + ( 2 / r ) ( r  I cos~b + r2 sin ~b). 

The orbit of  q~ through ~ = (2, ~, ~b, 0) 6 M is the 2-dimensional submanifold 

~2~ = {(x, y ,~ ,O(x ,  y)): (x, y) E R 2, 

0 (x, y) = 0 + (2/r)[(x  - 2 ) c o s  ~b + (y - p)s in  ~b]} (9.6) 

which is diffeomorphic to R 2. The orbits of  q~ being all diffeomorphic, they define a partition 
of M. By a simple check, we have also the following proposition. 

Proposition 9.2. The smooth group action defined by (9.5) is free, transitive on the orbit, 
proper and, to every z E M, •2z is an immersion o f R  2 in M. 

As a consequence, q~ verifies hypotheses (H.2) to (H.5) of  Section 6. Then the partition of 
M defined by qo is afibration; moreover, since M/•  2 = R 2 x ]1-2/R2 = q] -2, rr : M --+ M~ G 
is a trivial principal bundle. We will use (~o, 0) as coordinates on the quotient space and 
(x, y) as coordinates on the fibres. By Proposition 6.1 (see (6.4)) ,A -L = span{A l, A 2} is 

the vertical subspace. On the other hand, hypothesis (H.6) of  Section 6 fails to hold in this 
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example, so the constraint distribution ¢4 cannot define a principal connection on the above 

bundle. Following the construction displayed in Section 5 (formulae (5.2)-(5.4)) we can 

put an Ehresmann connection on rr : M ~ M / G .  After some calculations, one obtains 

1 ( l + 2 s i n 2 ~ 0  - 2  sin (p cos ~p 0 rcos~p ) . ( 9 . 7  ) 
ot = or(z) = ot(qg) = ~ - 2  sin ~p cos q9 1 q- 2cos2 ~p 0 r sin~0 

The expression of the curvature 2-form (see (5.4)) is I2 = (S21 , S2 2) : T M  × T M  ---> 

if21 : S'21 (qg) = 2 sin ~p(cos~p d q9 A dx + sin g~d~0 m dy + lrd<p A dO) (9.8) 

2 .Q2 = ~(22 (~0) = --~ COS ~O(COS q9 d~o A dx + sin ~o d~o/~ dy + ½r dcp/x dO). 
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Appendix A. Poincar~ duality 

Let M be an n-dimensional oriented smooth manifold. Denote by H k (M) the k-dimen- 

sional space of the de Rham cohomology. The Poincar6 duality, produced by the nonde- 

generate pairing 

H n - k ( M )  x H,k.(M) ~ ([al , [f l ])  w-~ f o r  Aft  C ~, 

M 

c: compact support, states an isomorphism between 

H n - k ( M )  ~-- (H,~(M))*, 

see [Bott and Tu, 1982, p.44]. Let S be a k-dimensional oriented submanifold of  M, j : 
S ~-~ M. By Stokes's theorem, the map 

Hkc(M) 3 [w(k)l ~ f j*o9 (k) z 

S 

is a linear functional on Hc k (M); hence, by the above duality, a cohomological class [~s] E 

H n - k ( M )  is associated to S, the so-called Poincar6 dual of S: 

f w(k) A.s= f j*w(k), V~o(k) E H~(M).  
M S 

Localization Principle [Bott and Tu, 1982, pp. 53, 67] agrees the Poincard dual to have 
support as small as we like into any open tubular neighbourhood of S. 
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